第329章 我嘞個加班
字數:8452 加入書籤
函數的概念及表示法、函數的有界性、單調性、周期性和奇偶性、複合函數、反函數、分段
函數和隱函數、基本初等函數的性質及其圖形、初等函數、函數關係的建立; 數列極限
與函數極限的定義及其性質、函數的左極限和右極限、無窮小量和無窮大量的概念及其關係、
無窮小量的性質及無窮小量的比較、極限的四則運算、極限存在的兩個準則;單調有界準則
和夾逼準則、兩個重要極限:
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關係.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解複合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之
間的關係.
6.掌握極限的性質及四則運算法則.
7.掌握極限存在的兩個準則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大
值和最小值定理、介值定理),並會應用這些性質.
二、一元函數微分學
導數和微分的概念、導數的幾何意義和物理意義、函數的可導性與連續性之間的關係、平麵
曲線的切線和法線、導數和微分的四則運算、基本初等函數的導數、複合函數、反函數、隱
函數以及參數方程所確定的函數的微分法、高階導數、一階微分形式的不變性、微分中值定
理、洛必達(’)法則、函數單調性的判別、函數的極值、函數圖形的凹凸性、拐
點及漸近線、函數圖形的描繪函數的最大值與最小值、弧微分及曲率的概念、曲率圓與曲率
半徑
考試要求
理解導數和微分的概念,理解導數與微分的關係,理解導數的幾何意義,會求平麵曲線的
切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性
與連續性之間的關係.
2.掌握導數的四則運算法則和複合函數的求導法則,掌握基本初等函數的導數公式.了解微
分的四則運算法則和一階微分形式的不變性,會求函數的微分.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.
5.理解並會用羅爾(roe)定理、拉格朗日(agrange)中值定理和泰勒(tayor)定理,了解並
會用柯西(cauchy)中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大
值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(注:在區間內,設函數具有二階導數.當時,的圖形是凹
的;當時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的
圖形.
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數積分學
原函數和不定積分的概念、不定積分的基本性質、基本積分公式、定積分的概念和基本性質、
定積分中值定理、積分上限的函數及其導數、牛頓萊布尼茨(netoneibniz)公式、不定
積分和定積分的換元積分法與分部積分法、有理函數、三角函數的有理式和簡單無理函數的
積分、反常(廣義)積分、定積分的應用。
理解原函數的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積
分法與分部積分法.
3.會求有理函數、三角函數有理式和簡單無理函數的積分.
4.理解積分上限的函數,會求它的導數,掌握牛頓萊布尼茨公式.
5.理解反常積分的概念,了解反常積分收斂的比較判別法,會計算反常積分.
6.掌握用定積分表達和計算一些幾何量與物理量(平麵圖形的麵積、平麵曲線的弧長、旋轉
體的體積及側麵積、平行截麵麵積為已知的立體體積、功、引力、壓力、質心、形心等)及
函數的平均值.
本小章還未完,請點擊下一頁繼續閱讀後麵精彩內容!
四、向量代數和空間解析幾何
向量的概念、向量的線性運算、向量的數量積和向量積、向量的混合積、兩向量垂直及平行
的條件、兩向量的夾角、向量的坐標表達式及其運算、單位向量、方向數與方向餘弦、曲麵
方程和空間曲線方程的概念、平麵方程、直線方程、平麵與平麵及平麵與直線及直線與直線
的夾角以及平行和垂直的條件、點到平麵和點到直線的距離、球麵、柱麵、旋轉曲麵、常用
的二次曲麵方程及其圖形、空間曲線的參數方程和一般方程、空間曲線在坐標麵上的投影曲
線方程.
考試要求
1.理解空間直角坐標係,理解向量的概念及其表示.
2.掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件.
3.理解單位向量、方向數與方向餘弦、向量的坐標表達式,掌握用坐標表達式進行向量運算
的方法.
4.掌握平麵方程和直線方程及其求法.
5.會求平麵與平麵、平麵與直線、直線與直線之間的夾角,並會利用平麵、直線的相互關係
(平行、垂直、相交等))解決有關問題.
6.會求點到直線以及點到平麵的距離.
7.了解曲麵方程和空間曲線方程的概念.
8.了解常用二次曲麵的方程及其圖形,會求簡單的柱麵和旋轉曲麵的方程.
9.了解空間曲線的參數方程和一般方程.了解空間曲線在坐標平麵上的投影,並會求該投影
曲線的方程.
五、多元函數微分學
多元函數的概念、二元函數的幾何意義、二元函數的極限與連續的概念、有界閉區域上多元
連續函數的性質、多元函數的偏導數和全微分、全微分存在的必要條件和充分條件.
多元複合函數、隱函數的求導法、二階偏導數、方向導數和梯度、空間曲線的切線和法平麵、
曲麵的切平麵和法線、二元函數的二階泰勒公式、多元函數的極值和條件極值、多元函數的
最大值、最小值及其簡單應用.
考試要求
1.理解多元函數的概念,理解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念以及有界閉區域上連續函數的性質.
3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條
件,了解全微分形式的不變性.
4.理解方向導數與梯度的概念,並掌握其計算方法.
5.掌握多元複合函數一階、二階偏導數的求法.
6.了解隱函數存在定理,會求多元隱函數的偏導數.
7.了解空間曲線的切線和法平麵及曲麵的切平麵和法線的概念,會求它們的方程.
了解二元函數的二階泰勒公式.
9.理解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數
極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多
元函數的最大值和最小值,並會解決一些簡單的應用問題.
六、多元函數積分學
二重積分與三重積分的概念、性質、計算和應用、兩類曲線積分的概念及性質及計算、兩類
曲線積分的關係、格林(green)公式、平麵曲線積分與路徑無關的條件、二元函數全微分的
原函數、兩類曲麵積分的概念及性質及計算、兩類曲麵積分的關係、高斯(gauss)公式、斯
托克斯(stokes)公式、散度和旋度的概念及計算、曲線積分和曲麵積分的應用.
考試要求
1.理解二重積分、三重積分的概念,了解重積分的性質,了解二重積分的中值定理.
2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱麵坐標、球
麵坐標).
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關係.
4.掌握計算兩類曲線積分的方法.
5.掌握格林公式並會運用平麵曲線積分與路徑無關的條件,會求二元函數全微分的原函數.
6.了解兩類曲麵積分的概念、性質及兩類曲麵積分的關係,掌握計算兩類曲麵積分的方法,
掌握用高斯公式計算曲麵積分的方法,並會用斯托克斯公式計算曲線積分.
7.了解散度與旋度的概念,並會計算.
8.會用重積分、曲線積分及曲麵積分求一些幾何量與物理量(平麵圖形的麵積、體積、曲麵
麵積、弧長、質量、質心、、形心、轉動慣量、引力、功及流量等).
七、無窮級數
常數項級數的收斂與發散的概念、收斂級數的和的概念、級數的基本性質與收斂的必要條件、
幾何級數與級數及其收斂性、正項級數收斂性的判別法、交錯級數與萊布尼茨定理、任意項
小主,這個章節後麵還有哦,請點擊下一頁繼續閱讀,後麵更精彩!
級數的絕對收斂與條件收斂、函數項級數的收斂域與和函數的概念、冪級數及其收斂半徑、
收斂區間(指開區間)和收斂域、冪級數的和函數、冪級數在其收斂區間內的基本性質、簡單
冪級數的和函數的求法、初等函數的冪級數展開式、函數的傅裏葉(fourier)係數與傅裏葉級
數、狄利克雷(dirichet)定理、函數在[i,i]上的傅裏葉級數、函數在[0,i]上的正弦級數和餘
弦級數.
考試要求
1.理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要
條件.
2.掌握幾何級數與級數的收斂與發散的條件.
3.掌握正項級數收斂性的比較判別法、比值判別法、根值判別法,會用積分判別法.
4.掌握交錯級數的萊布尼茨判別法.
5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關係.
6.了解函數項級數的收斂域及和函數的概念.
7.理解冪級數收斂半徑的概念、並掌握冪級數的收斂半徑、收斂區間及收斂域的求法.
8.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求一
些冪級數在收斂區間內的和函數,並會由此求出某些數項級數的和.
9.了解函數展開為泰勒級數的充分必要條件.
數,會將定義在[0,i]上的函數展開為正弦級數與餘弦級數,會寫出傅裏葉級數的和函數的表
達式.
八、常微分方程
常微分方程的基本概念、變量可分離的微分方程、齊次微分方程、一階線性微分方程、伯努
利(bernoui)方程、全微分方程、可用簡單的變量代換求解的某些微分方程、可降階的高階
微分方程、線性微分方程解的性質及解的結構定理、二階常係數齊次線性微分方程、高於二
階的某些常係數齊次線性微分方程、簡單的二階常係數非齊次線性微分方程、歐拉(euer)
方程、微分方程的簡單應用.
喜歡離語請大家收藏:()離語書更新速度全網最快。